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INTRODUCTION

Artificial intelligence (AI) has ushered in a new era of echocardiography. Integration of AI datasets 
aids in unmatched efficiency and reproducibility in the arena of echocardiography, making an 
invaluable modality for meeting increased demand. The contribution of novel machine learning 
(ML) models, and deep learning (DL) algorithms are transformative, as these can improve and 
generate new prognostication modalities for various cardiac as well as cardiovascular abnormalities.

Echocardiography provides non-invasive, accurate, and immediate characterization of cardiac 
anatomy, evaluation of biventricular function, atrioventricular coupling, valvular function, 
delineation of the pulmonary vasculature, and congenital abnormalities.[1] Its availability all 
around, minimal price, and better safety profile made it a necessary tool for all clinicians, including 
cardiologists and perioperative cardiac anesthesiologists.[2] Transesophageal echocardiography 
not only confirms the diagnosis but also delineates the anatomy and guides surgical repair. AI 
integration further minimizes the time of acquisition, and automated border tracking enables 
accurate assessment of cardiac function in a time constraint perioperative period and, therefore, 
considered as a modern stethoscope in the armamentarium of cardiac anesthesiologists. AI 
integration can also provide additional information which the human eye fails to detect.

In echocardiography, the interpretation of cardiac function highly depends on the subjective 
knowledge and level of experience of the interpreter as compared to other imaging techniques 
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such as nuclear imaging, computed tomography, and 
magnetic resonance imaging. This limitation can be 
overcome by AI technologies that offer produce automated, 
and more consistent interpretations of echocardiography.[3,4] 
Furthermore, AI has been used in educating and training 
novice doctors for image acquisition and interpretation.[5,6]

AI: THE INNOVATION

AI defines the application of machines to simulate the human 
brain and carry out multiple activities with limited participation 
or supervision.[7] ML is a subfield of AI which allows analysis 
of wide datasets through computing and various statistical 
algorithms. Furthermore, ML models can provide predictions 
and prognostication on the basis of unseen datasets.[8]

ML technique is categorized into three major groups, 
unsupervised, supervised, and reinforcement learning. 
Unsupervised learning mainly uses unlabeled datasets 
and focuses on devising new patterns and linkage among 
variables, whereas supervised learning “taught” machine 
to group the data by providing labeled data. Furthermore, 
the reinforcement learning model uses algorithms that are 
obtained through a trial and error method with only given 
dataset to optimize the result [Figure 1].

DL algorithm is a subcategory of ML model which consists 
of networks of nodes which simulate the human brain and 
neural networking, therefore, called artificial neural networks. 
Commonly, DL model constitutes convolutional neural 
networks (CNN) and recurrent neural networks. CNN can 
able to process two-dimensional (2D) image on the basis of 
multi-layered datasets, whereas recurrent neural networks are 
utilized for sequential datasets which, therefore, can be used 
for the interpretation of language and speech recognition.

AI INTEGRATED ECHOCARDIOGRAPHY: THE 
TIME IS NOW

Echocardiographic views acquisition and interpretation

AI algorithms in integration with commercially accessible 
software play a key role in acquisition and interpretation of 
echocardiographic views. These AI integrated models provide 
clear instructions for image acquisition, with proper probe 
manipulation, recognizing and warning about the image quality, 
thus facilitating training as well as self-improvement [Table 1]. In 
2021, Narang et al.[5] expressed the use of DL model in training 
nurses for the acquisition of echocardiograms and these nurses 
have no prior exposure to echocardiography. Same year, Schneider 
et al.[6] trained 1st  year medical students about the acquisition 
of diagnostic echocardiographic views using ML model; 
furthermore, this ML algorithm calculates left ventricle ejection 
fraction (LVEF) from the acquired datasets. Madani et al.[9] 
applied CNN for developing AI algorithm to classify 15 classical 
views on the basis of 267 labeled trials with a clinical variation. 
Their model can classify the images with 97.8% accuracy. More 
importantly, the interpretation is rapid with an average of 21 
milliseconds per image. Zhang et al.[10] also trained and validated 
CNN models for multi-tasking in echocardiography that includes 
classification of 23 standard views.

ECHOCARDIOGRAPHIC IMAGE ANALYSIS 
AND INTERPRETATION

Left ventricular systolic function (LVSF)

LVSF is one of the primary echocardiographic derivative, 
which has significant prognostic value. Systolic and diastolic 
function is the two horizon of heart failure, the determination 

Figure 1: Deep learning workflow in automated image analysis.
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of which comprises high inter-  as well as intra-observer 
variability and poor reproducibility. The most commonly 
used modified Simpson’s biplane method for calculation 
of LVEF required manual tracing of end-systolic and end-
diastolic border of the LV in the orthogonal views such as 
four-chamber and two-chamber views. It is challenging at 
times as it depends on good quality images, time consuming 
for manual tracing and has interobserver variability.

Leclerc et al.[11] trained an encoder decoder-based CNN 
and DL model for segmentation and analysis of 500 
echocardiography with four-  and two-chamber views and 
able to measure end-systolic, end-diastolic volumes, and 
LVEF. Its reproducibility was superior with regard to inter-
observer variability than conventional methods. Similarly, 
Ouyang et al.[12] developed another CNN model with 10030 
apical four chamber echocardiographic loops, which can 
predict LVEF with a mean absolute error of 4.1% and much 
faster rate, that is, 1.6 s per cardiac cycle [Figure 2 and 3].

LV Strain

Salte et al.[13] developed a DL-based algorithm to estimate 
global longitudinal strain (GLS) using traditional 2D 
echocardiography. The DL model effectively accomplished 
automatic segmentation and estimations of GLS across a 
wide range of cardiac abnormalities, with little variation of 
1.8% between the methods [Figure  4]. The evaluation was 
rapid and takes hardly 15 s time per assessment as compared 
to 5–10 min by traditional technique to determine GLS.

LV Diastolic function

Assessment of diastolic function is extremely difficult, with 
multiple echocardiographic parameters, numerous complex 
flow charts, and critical appraisal with guidelines. The novice 
AI technology enables easy diagnosis and interpretation of 
diastolic dysfunction. Salem et al.[14] used speckle tracking 
echocardiographic measurements to create an AI model that 
can precisely predict increased left atrial pressure, the key 
variable of diastolic dysfunction. Pandey et al.[15] emphasized 
ML-based algorithm for identifying individuals with high 
left atrial pressure in comparison to the American Society of 
Echocardiography 2016 diastolic guidelines grading system.

Right ventricle (RV) function

Evaluation of RV function is laborious and is affected by 
congenital malformation, left ventricular failure, valvular 
abnormalities, pulmonary arterial hypertension, and 
coronary artery disease (CAD). Moreover, precise evaluation 
of RV dysfunction may be tough due to its crescent 
shape, poor echocardiographic delineation of the RV, and 
discrepancy in RV functional analysis. However, with the 
advancement of AI technology, RV function can be assessed 
accurately and in a faster time. Zhu et al.[16] formulate an 
AI-based 3D echocardiographic algorithm to evaluate 
RV function accurately. The AI model showed excellent 
diagnostic accuracy being cut off ejection fraction of 43% 
with sensitivity and specificity of 94% and 67%, respectively, 
in comparison to cardiac magnetic resonance 0imaging 

Figure  2: Artificial intelligence integrated calculation of ejection fraction by automated border 
tracking. Green dots represents the endo-myocardial border whereas green and blue solid lines denote 
end-systolic and end-diastolic border respectively.
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[Figure  5]. Following LV assist device implantation, RV 
dysfunction is common but difficult to predict on the basis 
of existing echocardiographic parameters. However, Shad 
et al.[17] used video-based DL to forecast the development 
of RV failure following device implantation utilizing 2D 
echocardiographic dataset.

Valvular function

Echocardiographic evaluation of valvular morphology 
and function is a tedious process which requires proper 
imaging and precise measurements for the feasibility of 
repair. Moghaddasi and Nourian[18] used ML model for the 
assessment of mitral regurgitation on the basis of image 

Figure 3: Artificial intelligence integrated three-dimensional quantification of left ventricular function.

Figure 4: Artificial intelligence integrated measurements of global longitudinal strain by automatic 
speckle tracking. Blue dots indicate “speckles”.
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processing and micro-patterns of 2D echocardiography 
[Figure 6[. Prihadi et al.[19] innovate a AI based 3D 
transesophageal echocardiographic technique for precise 
measurement of aortic root and annular dimensions. Similar 
findings were also demonstrated by Queiros et al.[20] but using 
a different AI model for assessment of aortic valve evaluation 
in transcatheter aortic valve replacement.

Stress echocardiography

Stress echocardiography is a convenient technique for the detection 
of CAD, but requires a substantial learning with persistent inter-
observer variability. Omar et al.[21] confirmed the effectiveness 
of DL-based algorithm, which can be used for analyzing strain 
of stress echocardiographs. Upton et al.[22] did a multi-centric, 

Figure 5: Artificial intelligence integrated three-dimensional quantification of right ventricular function.

Figure 6: Artificial intelligence integrated three-dimensional quantification of mitral valve.
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multi-vendor trial using a CNN model that can recognize 
angiographically confirmed CAD on stress echocardiograms.

Other utilities

Zhang et al.[10] used a CNN-based model to develop a fully 
automated echocardiographic modality, including image 
recognition and segmentation to diagnose hypertrophic 
obstructive cardiomyopathy, amyloidosis, and pulmonary 
hypertension. Ghorbani et al.[23] invented a novice CNN 
algorithm to identify pacemaker leads, left atrial enlargement, 
and LV hypertrophy. Omar et al.[21] customized a CNN technique 
for the automatic assessment of regional wall motion abnormality 
by analyzing strain during dobutamine stress echocardiograms 
to diagnose CAD. Similarly, Kusunose et al.[24] developed CNN 
algorithm for distinguishing regional wall motion abnormality. 
Strzelecki et al.[25] validated an AI-derived model for automatic 
recognition of various intracardiac tumor and mass using 
2D echocardiography. This AI model demonstrates better 

accuracies, sensitivities, and specificities than conventional 
echocardiography. Sun et al.[26] developed a computer-aided 
diagnostic model from transesophageal echocardiographic 
images to detect left atrial and left atrial appendage thrombi. 
AI models can be integrated into hemodynamic measurements 
in less time. ML models trained to calculate systemic vascular 
resistance (SVR), pulmonary vascular resistance (PVR), and 
cardiac output (CO). Furthermore, AI-enhanced Doppler 
echocardiography can refine the TR jet, can integrate cardiac 
MRI, and catheterization data for accurate estimation of PVR. 
Similarly, AI-driven algorithms can predict SVR in real time, 
enabling vasopressor and fluid titration.

Disease prognostication

Samad et al.[27] developed a non-linear ML algorithm for 
the prediction of survival by utilizing clinical parameters 
and echocardiographic datasets. They have concluded 
that the tricuspid regurgitation velocity was more reliable 

Table 1: Artificial intelligence‑driven algorithms in echocardiography and cardiac abnormalities.

S. No. Authors Type of AI algorithm Description
1. Narang et al.[5] DL algorithm Guidance on image acquisition
2. Schneider et al.[6] ML algorithm Guidance for acquiring diagnostic echocardiography 

images
3. Madani et al.[9] CNN model Classification of 15 standard views
4. Zhang et al.[10] CNN models Classification of 23 standard views and segmentation
5. Leclerc et al.[11] CNN DL model Segmentation and analysis of apical four and two 

chamber views to measure LV EDV, ESV, and EF
6. Ouyang et al.[12] CNN model Prediction of EF
7. Salte et al.[13] DL model Automated segmentation and measurement of GLS
8. Salem Omar et al.[14] AI model Prediction of increased LV filling pressure
9. Pandey et al.[15] ML model Prediction of elevated LV filling pressure
10. Zhu et al.[16] AI algorithm Assessment of RV function using 3D echocardiography
11. Shad et al.[17] Video‑based DL model Development of RV failure
12. Moghaddasi and Nourian[18] ML model Assessment of mitral regurgitation
13. Prihadi et al.[19] 3D AI model Measurement of aortic annulus and root dimensions
14. Queiros et al.[20] AI algorithm Aortic valve assessment for TAVR
15. Omar et al.[21] DL based algorithm Strain analysis for stress echocardiograms
16. Upton et al.[22] CNN model Prognostication of coronary artery disease on stress 

echocardiograms
17. Ghorbani et al.[23] CNN model Diagnosing pacemaker leads, left atrial enlargement, 

and LV hypertrophy
18. Kusunose et al.[24] CNN model Detection of regional wall motion abnormality
19. Strzelecki et al.[25] AI‑derived algorithm Automatic identification of intracardiac tumor and 

thrombi
20. Sun et al.[26] Computer‑aided diagnostic algorithm Left atrial and left atrial appendage thrombi
21. Samad et al.[27] Non‑linear ML model Prediction of survival from tricuspid regurgitation 

velocity than EF
AI: Artificial intelligence, DL: Deep learning, ML: Machine learning, CNN: Convolutional neural networks, LV: Left ventricle, RV: Right ventricle, 
ESV: End‑systolic volume, EDV: End‑diastolic volume, EF: Ejection fraction, GLS: Global longitudinal strain, TAVR: Transcatheter aortic valve 
replacement, 3D: Three‑dimensional
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echocardiographic parameter for survival than LVEF. 
Furthermore, Omar et al.[21] utilized unsupervised cluster analysis 
techniques for the evaluation of diastolic function and found two 
phenotypic categories of diastolic failure. Zhang et al.[10] used AI-
derived echocardiographic paraments for the assessment of GLS 
in individuals treated with cardiotoxic chemotherapeutic agents 
and even prognostication of the patients.

AI-BASED TRAINING

AI has made immense development in the training for the 
acquisition, interpretation, and diagnosis of cardiovascular 
abnormalities by echocardiography. The major issue is 
to train how to operate the machine as well as the probe. 
Arbeille et al.[28] first revealed the efficient control of robots 
with a teleoperated motorized echocardiography probe by 
trained echocardiographers. Later on, Narang et al.[5] and 
Schneider et al.[6] used AI-based technology to train nurses 
and 1st year medical students, respectively.

OVERCOMING CHALLENGES: THE FUTURE 
PROSPECTS

Despite of huge development of AI in echocardiography, 
there are certain challenges for its globalization. Firstly, 
legal and ethical issues incurred with AI integration on 
echocardiography are the major hurdle; therefore, extensive 
validation study should be carried out before seeking 
approval of regulatory bodies.[29]

Furthermore, the internal network of DL algorithms is 
difficult to understand, therefore, often considered as a “black 
box” that makes hesitancy in adoption by clinicians. Although 
challenging and time-consuming, extensive training with 
larger training data sets with regard to acquisition, labeling, 
and interpretation can overcome the hesitancy hurdle.[30]

The most important limitation is the requirement of huge 
data banks constituting high quality training datasets to train 
the algorithm. If the algorithm is trained with sub-optimal 
real world imaging, it will give impaired view recognition and 
interpretation, which can hamper the quality of results. The 
solution is to continue continuous training of models with real 
world datasets to ascertain improved effectuality and safety.[31-33]

Another limitation is paucity of clinical trials on AI. Evidence 
of robust clinical outcomes should be required before the 
integration of AI into echocardiographic practice. Moreover, 
more clinical trials are required to validate AI in multiple 
demographic locations and various vendor-dependent setups. 
AI-enabled systems are costlier to set up; however, carrying 
out repetitive, simple tasks more accurately and substantially 
faster without medical errors make it cost effective.

AI models trained primarily on normal sinus rhythm patients 
and may not generalize well to patients with arrhythmias 

unless explicitly trained with diverse dataset. However, AI can 
analyze thousands of beats quickly and provide trend analysis 
rather than relying on single cycle measurement. Future 
AI models may integrate real-time electrocardiogram and 
respiratory monitoring to adjust these variations dynamically.

AI is continuously evolving and therefore, a multidisciplinary 
approach with engineers, computer scientists, and 
echocardiographers is inevitable for the fruitful integration of 
AI in echocardiography. This novice innovation expanded its 
boundaries and paved the pathway for huge clinical studies 
as well as multicentric trials.

CONCLUSION

Transforming potential of AI has led its integration with 
echocardiography. Starting from training echocardiographers, 
AI integration culminate improvement in image acquisition, 
recognition, and interpretation of echocardiographic views. 
The major perk of AI integration is incomparable effectiveness 
and reproducibility. Despite of considerable impediments, the 
future of AI in echocardiography cannot be challenged and 
has the potential to revolutionize modern echocardiography.
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