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INTRODUCTION

Cardiac critical care (CCC) encompasses a major burden globally, accompanied by increasing 
mortality. It involves a wide variety of cardiovascular diseases with their diverse outcome. Therefore, 
artificial intelligence (AI) helps in the assimilation of disease complexity, handling heterogeneity of 
clinical presentation, risk stratification, anticipating clinical worsening, and proficiency in providing 
early treatment strategies in a better way and an adjunct to conventional critical care practice.

AI is a rapidly developing technology that amalgamates material science, neuronal networks, 
and computer science to develop algorithms that facilitate the complex network of action.[1] 
AI aims to simulate the human brain in early recognition and optimal decision-making. With 
exponential advancement in technologies, AI has become an inevitable part of critical care 
medicine, cardiovascular illness, and CCC.[2]

This review emphasizes the current supremacy, application, and pitfall of AI in CCC and also 
enlightens the anticipated challenges and future prospects.

HISTORICAL PERSPECTIVE OF AI

In the early 1950s, Alan Turing investigated the possible mathematical algorithm attributed to 
building intelligent machines; however, these machines were devoid of functional capabilities 
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to implement the theoretical knowledge of AI.[3] In 1955, 
McCarthy coined the term AI.[3] With the evolution of 
computer power, clinical decision-making emerged in 
the 1990s. The initial application of AI in cardiac setup 
was the evolution of self-learning neuronal networks on 
electrocardiography (ECG).[4] Over time, AI progressed 
from computer games to precise disease identification by 
merging various multi-faceted imaging, AI-aided monitoring 
techniques, and precise treatment strategies.[5]

AI TECHNIQUE

AI techniques are based on machine learning (ML) that 
includes various complex mathematical algorithms between 
input and output by presuming multiple data sets to predict 
new data sets. ML can be supervised, unsupervised, semi-
supervised, or reinforcement learning [Figure  1]. However, 
deep learning (DL) involves minimal data arbitration 
[Figure  2]. Convolutional neural network (CNN) involves 
the DL algorithm, which is based on the visual cortex of the 
human brain. It is specifically designed for image processing 
and implementation.

AI is categorized into predictive AI and actionable AI. 
In a predictive model, AI offers early warning of possible 
adverse events so that the clinician can pre-emptively initiate 
appropriate intervention. Whereas actionable AI performs 
interference tasks and could even advise treatment options 
for the best predicted outcome [Figure 3].

APPLICATIONS OF AI IN CCC

Disease identification

Identifying the criticality of a disease from an extensive list 
of differential diagnoses can become easier with the help 
of AI. For example, pulmonary edema secondary to heart 
failure can be discriminated from pulmonary pathology 
using an ML model[6], and moreover, the amount of edema 
in the lungs can also be quantified using a semi-supervised 
variational autoencoder.[7] Similarly, during the COVID-19 
pandemic, severe acute respiratory syndrome (SARS) was 
detected by processing imaging data from patients using an 
AI model.[8]

Disease evolution and risk prediction

In the critical care unit, expeditious clinical deterioration is 
not uncommon and may be irreversible and life-threatening 
if diagnosed late. Thus, early prediction and stratification 
of hemodynamic decompensation are necessary for timely 
action. Tachycardia is an early sign of observed disparity 
from the normal range before shock, and it can be predicted 
75  min before shock using a random forest model-based 
normalized dynamic risk score trajectory.[9]

AI-driven models can forecast the evolution of SARS due 
to COVID-19 by utilizing various clinical parameters and 
imaging modalities.[10] Even cardiopulmonary arrest can be 
predicted with an electronic Cardiac Arrest Risk Triage score, 
which was shown to be non-inferior as compared to traditional 
scoring systems.[11] Even the Weibull-Cox proportional 
hazards model, on the basis of multifarious clinical databases 
and collective vital parameters, can predict sepsis.[12]

Disease heterogeneity and decision-making

Cardiovascular criticality is complex and rarely has typical 
manifestation. Rather it has inherent heterogeneity, which 

Figure 1: Artificial intelligence techniques.

Figure  2: Comparing machine learning and deep learning 
approaches.
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afterward can complicate the underlying disease course 
and may incite multiorgan dysfunction. Furthermore, the 
composite critical state transits so rapidly that clinicians 
cannot make decisions on the basis of recent investigations. 
AI could delineate heterogeneity and criticality and, 
therefore, trigger individualized management in accordance 
with current guidelines.

A parsimonious model was developed and validated for 
latent stage analysis of acute respiratory distress syndrome 
(ARDS) using various classifier variables (interleukin-6, 8, 
tumor necrosis factor receptor, protein C, bicarbonate levels, 
and vasopressors requirement).[13] This ML-based ARDS 
classification has extended and integrated the knowledge for 
assessing and managing such complex situations. Furthermore, 
for patients on ventilatory support, timed data with almost 44 
characteristics were retrieved with the help of the reinforcement 
learning model (Markov Decision Process) to provide better 
patient outcomes as compared to clinician conventional 
care with regard to 90-day and intensive care unit (ICU) 
mortality.[14] AI helps in each step of diagnosis and treatment 
of sepsis, such as early detection by predictive analytics, AI-
driven real-time monitoring, risk stratification, personalized 
treatment plans, antibiotics stewardship, fluid responsiveness, 
outcome prediction, and integrated electronic health records. 
Applying reinforcement learning-based algorithms for sepsis 
management, AI can provide timely optimal decision-making 
and generate appropriate individualized solutions.[15]

IMPLICATION OF AI IN CARDIOVASCULAR 
DISEASE

Coronary artery disease (CAD)

Acute coronary syndrome (ACS) is the most common type 
of cardiac illness and the major cause of mortality nowadays. 

ML-based algorithms play a pivotal role in the prompt 
diagnosis, risk stratification, disease prognostication, and 
treatment protocol for ACS. Recently, a CNN algorithm 
using 40 variables such as ECG, biomarkers, and history 
was validated to predict the requirement of angiography in 
ACS presenting to the emergency department.[16] Similarly, 
another CNN developed from 42 demographic and 
clinical variables that predict non-ST elevation myocardial 
infarct.[17] AI algorithms using the support vector machine 
(SVM) model can also derive short-term as well as long-term 
in hospital mortality in patients with ACS.[18] A random forest 
ML-based technique was introduced to measure coronary 
arterial calcium, which can be derived automatically from 
computed tomography (CT) imaging. This algorithm has a 
better correlation coefficient and importantly, shortened the 
processing times in comparison to manual interpretation.[19] 
Another novel study used a boosted ensemble ML algorithm 
(LogitBoost)-based technique to evaluate myocardial 
perfusion single-photon emission CT scan of suspected and 
low likelihood of CAD for risk stratification.[20]

Valvular heart disease

Valvular pathologies are well diagnosed by their characteristic 
murmur, and therefore, AI-based algorithms were 
incorporated into phonocardiograms for clinical decision-
making. SVM classifier was developed to classify abnormal 
heart sounds, which is an AI technology.[21] AI algorithms can 
even identify minimal discrimination and pattern in pixel 
density and thereby, widely applied to echocardiography. An 
ML algorithm was introduced in patients with aortic stenosis 
undergoing transcatheter aortic valve replacement (TAVR) 
to measure the aortic valve annulus. Furthermore, in hospital 
mortality after TAVR can be predicted using artificial neural 

Figure 3: Artificial intelligence types in critical care practice.
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network (ANN), logistic regression technique, and random 
forest ML algorithms.[22] Similarly, another ML-based 
algorithm was developed for measuring the mitral annular 
dimensions, and it is significantly less time consuming.[23]

Electrophysiology

Arrhythmias are common with underlying cardiac pathology, 
especially atrial fibrillation, which is the most prevalent 
arrhythmia. Nowadays, AI adds new insights for diagnosis 
and risk stratification to the key diagnostic tool ECG. Several 
recent trials incorporate ANN on single, 3, and 12 lead ECGs 
to accurately distinguish and diagnose arrhythmias. Hannun 
et al. and Raghunath et al. used deep neural networks (DNN) 
for the classification of ECG into rhythm classes and to 
predict all-cause mortality.[24,25] ML algorithms can be used 
to detect electrolyte derangements and predict the future 
incidence of arrhythmias.

Cardiac failure

Cardiac failure is a complex entity where cardiac output 
does not meet metabolic demand. AI-based predictive 
modeling and automated cardiac function measurements 
reinforce diagnostic capacity and decision-making as 
compared to conventional echocardiography. Moreover, 
advanced AI like “HeartModel A.I.” uses AI segmentation 
and 3D echocardiographic algorithm to quantify 
cardiac volumes automatically and it was validated by 
Medvedofsky et al.[26] Son et al. and Kang et al., developed 
various AI-based algorithms, SVM-based models, and 
ANN in patients with HF for risk assessment, medication 
adherence, predicting morbidity and mortality, and 
repeated hospitalizations.[27,28] The LINK-HF study and 
Akbilgic et al., developed a CNN-based ECG-AI model 
were examples of the advancement of AI technology in the 
management of heart failure.[29,30]

FUTURE PROSPECTS AND CHALLENGES

Future AI models can be planned to maximize patient 
welfare and minimize risks to the patients with proper 
utilization of limited resources. The Randomized Embedded 
Multifactorial Additive Platform for Community-Acquired 
Pneumonia is one such example. It is adopted from the 
Bayesian inference model, and this multicentric trial allows 
randomization with multiple causal inferences, creates robust 
intervention arms with multiple patient subgroups, provides 
response-dependent randomization, and provides a new 
perpetual enrollment platform along the evaluation of the 
initial treatments. This platform not only identifies optimal 
management strategies for community-acquired pneumonia 
but is also used during the COVID-19 pandemic for better 
treatment and survival of critically ill patients.[31]

AI-enabled devices are costlier to set up; however, carrying 
out repetitive, simple tasks more accurately and substantially 
faster without medical errors makes it cost-effective. However, 
low-cost wearable devices, smart monitoring systems, point-
of-care diagnostics and imaging devices, tensor flow-based 
predictive outcomes, Tele ICU, etc., are more affordable AI-
enabled systems and can be integrated into existing hospital 
infrastructure. Moreover, the incorporation of AI needs 
additional training such as operational training, technical 
training, and troubleshooting for adaptation to new tools to 
aid clinical decision-making.

Real-time AI models with expeditious data pre-processing 
techniques can be updated rapidly with new inputs so that 
they can be used in the real scenario. The output should also 
be quickly delivered to the patients. Once the AI models 
achieve such tremendous performance and are ready to 
helpful in a real-life scenario, stringent efforts should be 
carried out for appropriate implementation strategies as well 
as quality assessment.[32]

CONCLUSION

The global burden of cardiac illness and its criticality 
requires timely diagnosis, effective treatment, and 
stringent follow-up for better patient outcomes and 
appropriate utilization of healthcare resources. Fortunately, 
AI algorithms are becoming a powerful tool in drawing 
pertinent clinical inputs derived from numerous 
investigation reports, monitoring tools, and diagnostic 
datasets and utilizing these data for building ML, ANN, 
DNN, and SVM-based models and helping disease 
identification, risk stratification, and clinical decision-
making. However, necessary efforts should be taken to 
ensure minimum bias using multicenter, heterogeneous 
patients for enhancement of the AI solution and their 
assimilation with the healthcare system.
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